

Simulation von Oberflächendefekten mittels Raytracing zur Bestimmung der Fehlerauffindwahrscheinlichkeit (POD)

Markus RAUHUT *, Martin SPIES *, Andreas JABLONSKI * * Fraunhofer Institut für Techno- und Wirtschaftsmathematik ITWM, Kaiserslautern

Kurzfassung

Bei optischen Prüfsystemen entscheidet das Erreichen der vom Endanwender vorgegebenen Detektionsrate und Auffindwahrscheinlichkeit darüber, ob ein solches System in der Praxis einsetzbar ist. Eine Möglichkeit, diese Parameter quantitativ zu bestimmen, bieten â versus a-Analysen zur Bestimmung der Fehlerauffindwahrscheinlichkeit (englisch: Probability of Detection, POD). Die POD-Analyse erlaubt, die sicher detektierbaren minimalen Fehlergrößen quantitativ zu berechnen.

Eine Möglichkeit, die POD-Analyse für optische Systeme zu evaluieren, ist die Erstellung von Prüfkörpern mit eingebrachten Soll-Fehlern, z.B. Nuten zur Beschreibung von Rissen. Aufgrund der hohen Vielfalt kann so aber nur ein kleiner Teil von Defekten abgedeckt werden. Wir haben daher mittels Raytracing ein Verfahren zur realistischen Simulation von Oberflächendefekten entwickelt. Die so erzeugten Bilddaten ermöglichen eine POD-Analyse auf Basis einer großen Anzahl von Defekten. Weiterhin vergleichen wir die Ergebnisse der klassischen POD-Analyse nach MIL-HDBK-1823 mit den Erfahrungen gegeben durch die Praxis.

Unsere Themen dieses	Jahr		
Online-Prozessüberwachung	Mo.3.A.1		
Simulation und POD f ür Oberfl ächenfehler	Mo.3.B.4		
 Schweißnahtprüfung (mit der MPA Stuttgart) 	Di.2.B.1		
 Rohrprüfung (mit Salzgitter-Mannesmann Forschung) 	Mi.2.A.4		
ZfP für Leichtbauwerkstoffe	Mi.3.C.1		
Spannungsmessung an Triebwerkswerkstoffen	P25		
Porositätsmessung an gegossenen Bronzen	P28		
Schnelle Simulation f ür komplexe Materialien	P48		
Kontaktieren Sie uns unter ,ZfP@itwm.1	fraunhofer.de'		

Dach-Jahrestagung 201	14, Potsdam				
26.– 28. Mai 2014					
Fraunhofer Institut für Techno- und Wirtsc	haftsmathematik				
Markus Rauhut	Simulation, Bildanalyse und Datenauswertung				
Martin Spies	POD-Analyse				
Andreas Jablonski	POD-Analyse				

Motivation	
Die Oberflächeninspektion verwendet eine indirekte Messmethode:	
Je nach Beleuchtung und Kamerawinkel verändert sich die Erscheinung von Defekten und Geometrieabweichungen.	
Im schlimmsten Fall sind bei schlechtem Aufbau von Sensor und Beleuchtung Defekte gar nicht sichtbar.	
Ist der Aufbau der Sensorik perfekt kann es trotzdem noch zu Fehldetektionen kommen (falsch positive). Aufwändige Algorithmik kann dieses Problem lösen.	
Werden alle Defekte unter den gegebenen Randbedingungen gefunden?	
Kann das gesamte Oberflächeninspektionssystem virtuell dargestellt und getestet werden?	
• Fraunhofer ITWM Competence in NDT&E	er

Auffindwahrschei	nlichkeit (POD)	
Die POD kann quantitati	ve Aussagen zur Qualität einer optische	en Prüfung liefern.
Für die <i>â vs a</i> bzw. <i>log(â)</i> notwendig die beschreib) <i>vs log(a)</i> Analyse ist ein Metrik (<i>die Am</i> ot wie sicher ein Defekt erkannt wurde.	pplitude)
Hier: Metrik = #Pixel _{Found}		
Entspricht dem "normale basierend auf Schwellwe	en" Verhalten von Bildverarbeitungsalg erten und Flächen entscheiden.	orithmen, die
© Fraunhofer ITWM 43	Competence in NDT&E	Fraunhofer

Auffindwahrscheinlichkeit (POD)						
Zusammenfase	suna	A Wer	te			
Pixelauflösung	0.0	5 - 90/95 5mm				
Tiefe	0,0	0.01mm – 0.08 mm				
Datensätze	480	480				
Risse pro Breite	60					
Licht\Proito		0.15 mm	0.25 mm	0.25mm	0.45 mm	
Licht/Breite		0,15 mm	0,25 mm	0,35mm	0,45 mm	
Seitenlicht		1,67	1,04	0,8	0,62	
Auflicht		3,29	1,56	1,38	1,05	
		•				

Daten					
Zusammenfass	ung A _{90/95} Wo	erte			
Pixelauflösung	0,05mm				
Datensätze	480				
Risse pro Breite	60				
Licht\Breite	0,15 mm	0,25 mm	0,35mm	0,45 mm	
Seitenlicht	1,67	1,04	0,8	0,62	
Auflicht	3,29	1,56	1,38	0,9	
© Fraunhofer ITWM 56		Compete	ence in ND	T&E	Fraunhofer

